1,306 research outputs found

    Affine Subspace Representation for Feature Description

    Full text link
    This paper proposes a novel Affine Subspace Representation (ASR) descriptor to deal with affine distortions induced by viewpoint changes. Unlike the traditional local descriptors such as SIFT, ASR inherently encodes local information of multi-view patches, making it robust to affine distortions while maintaining a high discriminative ability. To this end, PCA is used to represent affine-warped patches as PCA-patch vectors for its compactness and efficiency. Then according to the subspace assumption, which implies that the PCA-patch vectors of various affine-warped patches of the same keypoint can be represented by a low-dimensional linear subspace, the ASR descriptor is obtained by using a simple subspace-to-point mapping. Such a linear subspace representation could accurately capture the underlying information of a keypoint (local structure) under multiple views without sacrificing its distinctiveness. To accelerate the computation of ASR descriptor, a fast approximate algorithm is proposed by moving the most computational part (ie, warp patch under various affine transformations) to an offline training stage. Experimental results show that ASR is not only better than the state-of-the-art descriptors under various image transformations, but also performs well without a dedicated affine invariant detector when dealing with viewpoint changes.Comment: To Appear in the 2014 European Conference on Computer Visio

    SenseCam image localisation using hierarchical SURF trees

    Get PDF
    The SenseCam is a wearable camera that automatically takes photos of the wearer's activities, generating thousands of images per day. Automatically organising these images for efficient search and retrieval is a challenging task, but can be simplified by providing semantic information with each photo, such as the wearer's location during capture time. We propose a method for automatically determining the wearer's location using an annotated image database, described using SURF interest point descriptors. We show that SURF out-performs SIFT in matching SenseCam images and that matching can be done efficiently using hierarchical trees of SURF descriptors. Additionally, by re-ranking the top images using bi-directional SURF matches, location matching performance is improved further

    A comparative evaluation of interest point detectors and local descriptors for visual SLAM

    Get PDF
    Abstract In this paper we compare the behavior of different interest points detectors and descriptors under the conditions needed to be used as landmarks in vision-based simultaneous localization and mapping (SLAM). We evaluate the repeatability of the detectors, as well as the invariance and distinctiveness of the descriptors, under different perceptual conditions using sequences of images representing planar objects as well as 3D scenes. We believe that this information will be useful when selecting an appropriat

    Interactions between TNF-α, LTF and mLYZ Gene Variants in Determining Somatic Cell Count in Jersey Cows

    Get PDF
    The aim of the research was to establish if there are any statistically significant associations between the polymorphisms of the selected genes (TNF-α, LTF, mLYZ) and natural log-transformed SCC (LnSCC) and search for possible interactions between the genetic variants of the selected genes in determining various SCC values in milk. The study included 171 Jersey cows. Two alternative approaches were compared: the standard simple model accounting for the additive effect of a single locus only, and the full model including both additive and dominance effects of TNF-α, LTF and mLYZ as well as the interactions between them. The results obtained with the full model are different from those obtained with the standard model including only the additive effects of individual genes. The results presented above prove the existence of complex functional interactions between lactoferrin, lysozyme and tumor necrosis factor and suggest that the alleles of the genes that encode them might interact with each other too

    Rectification from Radially-Distorted Scales

    Full text link
    This paper introduces the first minimal solvers that jointly estimate lens distortion and affine rectification from repetitions of rigidly transformed coplanar local features. The proposed solvers incorporate lens distortion into the camera model and extend accurate rectification to wide-angle images that contain nearly any type of coplanar repeated content. We demonstrate a principled approach to generating stable minimal solvers by the Grobner basis method, which is accomplished by sampling feasible monomial bases to maximize numerical stability. Synthetic and real-image experiments confirm that the solvers give accurate rectifications from noisy measurements when used in a RANSAC-based estimator. The proposed solvers demonstrate superior robustness to noise compared to the state-of-the-art. The solvers work on scenes without straight lines and, in general, relax the strong assumptions on scene content made by the state-of-the-art. Accurate rectifications on imagery that was taken with narrow focal length to near fish-eye lenses demonstrate the wide applicability of the proposed method. The method is fully automated, and the code is publicly available at https://github.com/prittjam/repeats.Comment: pre-prin

    Ubic: Bridging the gap between digital cryptography and the physical world

    Full text link
    Advances in computing technology increasingly blur the boundary between the digital domain and the physical world. Although the research community has developed a large number of cryptographic primitives and has demonstrated their usability in all-digital communication, many of them have not yet made their way into the real world due to usability aspects. We aim to make another step towards a tighter integration of digital cryptography into real world interactions. We describe Ubic, a framework that allows users to bridge the gap between digital cryptography and the physical world. Ubic relies on head-mounted displays, like Google Glass, resource-friendly computer vision techniques as well as mathematically sound cryptographic primitives to provide users with better security and privacy guarantees. The framework covers key cryptographic primitives, such as secure identification, document verification using a novel secure physical document format, as well as content hiding. To make a contribution of practical value, we focused on making Ubic as simple, easily deployable, and user friendly as possible.Comment: In ESORICS 2014, volume 8712 of Lecture Notes in Computer Science, pp. 56-75, Wroclaw, Poland, September 7-11, 2014. Springer, Berlin, German

    AirNet: Neural Network Transmission over the Air

    Get PDF
    State-of-the-art performance for many emerging edge applications is achieved by deep neural networks (DNNs). Often, the employed DNNs are location- and time-dependent, and the parameters of a specific DNN must be delivered from an edge server to the edge device rapidly and efficiently to carry out time-sensitive inference tasks. This can be considered as a joint source-channel coding (JSCC) problem, in which the goal is not to recover the DNN coefficients with the minimal distortion, but in a manner that provides the highest accuracy in the downstream task. For this purpose we introduce AirNet, a novel training and analog transmission method to deliver DNNs over the air. We first train the DNN with noise injection to counter the wireless channel noise. We also employ pruning to identify the most significant DNN parameters that can be delivered within the available channel bandwidth, knowledge distillation, and nonlinear bandwidth expansion to provide better error protection for the most important network parameters. We show that AirNet achieves significantly higher test accuracy compared to the separation-based alternative, and exhibits graceful degradation with channel quality

    FPGA-based module for SURF extraction

    Get PDF
    We present a complete hardware and software solution of an FPGA-based computer vision embedded module capable of carrying out SURF image features extraction algorithm. Aside from image analysis, the module embeds a Linux distribution that allows to run programs specifically tailored for particular applications. The module is based on a Virtex-5 FXT FPGA which features powerful configurable logic and an embedded PowerPC processor. We describe the module hardware as well as the custom FPGA image processing cores that implement the algorithm's most computationally expensive process, the interest point detection. The module's overall performance is evaluated and compared to CPU and GPU based solutions. Results show that the embedded module achieves comparable disctinctiveness to the SURF software implementation running in a standard CPU while being faster and consuming significantly less power and space. Thus, it allows to use the SURF algorithm in applications with power and spatial constraints, such as autonomous navigation of small mobile robots

    Combining depth and intensity images to produce enhanced object detection for use in a robotic colony

    Get PDF
    Robotic colonies that can communicate with each other and interact with their ambient environments can be utilized for a wide range of research and industrial applications. However amongst the problems that these colonies face is that of the isolating objects within an environment. Robotic colonies that can isolate objects within the environment can not only map that environment in de-tail, but interact with that ambient space. Many object recognition techniques ex-ist, however these are often complex and computationally expensive, leading to overly complex implementations. In this paper a simple model is proposed to isolate objects, these can then be recognize and tagged. The model will be using 2D and 3D perspectives of the perceptual data to produce a probability map of the outline of an object, therefore addressing the defects that exist with 2D and 3D image techniques. Some of the defects that will be addressed are; low level illumination and objects at similar depths. These issues may not be completely solved, however, the model provided will provide results confident enough for use in a robotic colony

    Channel-adaptive wireless image transmission with OFDM

    Get PDF
    We present a learning-based channel-adaptive joint source and channel coding (CA-JSCC) scheme for wireless image transmission over multipath fading channels. The proposed method is an end-to-end autoencoder architecture with a dual-attention mechanism employing orthogonal frequency division multiplexing (OFDM) transmission. Unlike the previous works, our approach is adaptive to channel-gain and noise-power variations by exploiting the estimated channel state information (CSI). Specifically, with the proposed dual-attention mechanism, our model can learn to map the features and allocate transmission-power resources judiciously to the available subchannels based on the estimated CSI. Extensive numerical experiments verify that CA-JSCC achieves state-of-the-art performance among existing JSCC schemes. In addition, CA-JSCC is robust to varying channel conditions and can better exploit the limited channel resources by transmitting critical features over better subchannels
    corecore